\square
Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular \& Supplementary Examinations March-2023

 FLUID MECHANICS \& HYDRAULIC MACHINERY(Mechanical Engineering)
Time: 3 hours
Max. Marks: 60

(Answer all Five Units $5 \times 12=60$ Marks)
 UNIT-I

1 a Differentiate kinematic viscosity and dynamic viscosity. Give their dimensions.
b Calculate the capillary raise in a glass tube of 2.5 mm diameter when immersed vertically water \& mercury. Take surface tension is $0.0725 \mathrm{~N} / \mathrm{m}$ for water and $0.52 \mathrm{~N} / \mathrm{m}$ for mercury. The specific gravity of mercury is given 13.6 and angle of contact is 130°

OR

2 a List out different types of manometers. Explain about piezometer in detail.
b An inverted U - tube manometer is connected to two horizontal pipes A and B through which water is flowing. The vertical distance between the axes of these pipes is 30 cm . When an oil of specific gravity 0.8 is used as a gauge fluid, the vertical heights of water columns in the two limbs of the inverted manometer (when measured from the respective center lines of the pipes) are found to be same and equal to 35 cm . Determine the difference of pressure between the pipes.

UNIT-II

3 a Define rate of flow and derive continuity equation for one dimensional flow.
b Water is flowing through a pipe has diameter 300 mm and 200 mm at the bottom and upper end respectively. The intensity of pressure at the bottom end is $24.525 \mathrm{~N} / \mathrm{cm}^{2}$ and the pressure at the upper end is $9.81 \mathrm{~N} / \mathrm{cm}^{2}$. Determine the difference in datum head if the rate of flow through pipe is 40 lit/s.

OR

4 a Derive Bernoulli's equation and state assumptions.
b Water is flowing through a pipe of 5 cm diameter under a pressure of 29.43 $\mathrm{N} / \mathrm{cm}^{2}$ (gauge) and with mean velocity of $2.0 \mathrm{~m} / \mathrm{s}$. Find the total head or total energy per unit weight of the water at a cross section, which is 5 m above the datum line

UNIT-III

5 a Explain about Venturimeter with neat sketches. Derive expression for rate of flow through Venturimeter
b A sub-marine move horizontally on a sea and has its axis 15 m below the surface of water. A pitot tube properly placed just in front of a sub-marine and along its axis is connected to two limbs of a U - tube containing mercury. The difference of mercury level is found to be 170 mm . Find the speed of the sub marine knowing that the specific gravity of mercury is 13.6 and that of sea water is 1.026 with respect of fresh water.

OR

6 a Derive the expression for head loss in pipes due to friction by using Darcy Weisbach equation
b Find the head lost due to friction in a pipe of diameter 300 mm and length 50 m , through which water is flowing at a velocity of $3 \mathrm{~m} / \mathrm{s}$ using Darcy formula.

UNIT-IV

7 a Obtain an expression for the hydraulic efficiency when a liquid jet strikes a single fixed curved vane
b A 7.5 cm diameter jet having a velocity of $30 \mathrm{~m} / \mathrm{s}$ strikes a flat plate, the normal of which is inclined at 45° to the axis of the jet. Calculate the normal pressure on the plate when (i) the plate is stationary, and (ii) when the plate is moving with a velocity of $15 \mathrm{~m} / \mathrm{s}$ and away from the jet.

OR

8 a Describe the different types of hydroelectric power stations.
b A jet of water having a velocity of $15 \mathrm{~m} / \mathrm{s}$, strikes a curved vane which is moving with a velocity of $5 \mathrm{~m} / \mathrm{s}$ in the same direction as that of the jet at inlet. The vane is so shaped that the jet is deflected through 135°. The diameter of jet is 100 mm . Assuming the vane to be smooth, find: (i) force exerted by the jet on the vane in the direction of the motion, (ii) Power exerted on the vane, and (iii) Efficiency of the vane.

UNIT-V

9 a Explain the Classifications and efficiencies of turbines in detail.
b The following data is given for the Francis turbine. Net head $\mathrm{H}=60 \mathrm{~m}$, Speed N $=700$ r.p.m., Shaft Power $=294.3 \mathrm{~kW}, \eta o=84 \% \eta \mathrm{~h}=93 \%$, flow ratio $=0.2$, breadth ratio $\mathrm{n}=0.1$, outer diameter of the runner $=2 \mathrm{X}$ inner diameter of the runner. The thickness of vane occupies 5% of circumferential area of the runner, velocity of flow is constant at inlet and outlet and discharge is radially at outlet. Determine: (i) Guide blade angle, (ii) Runner vane angles at inlet and outlet, (iii) Diameters of runner at inlet and outlet, and (iv) Width of wheel at inlet.

OR

10 a Describe pumps in series and parallel.
b The internal and external diameters of the impeller of a centrifugal pump are angles of the impeller at inlet and outlet are 20° and 30° respectively. The water enters the impeller radially and velocity of flow is constant. Determine the work done by the impeller per unit weight of water.

